The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato.

نویسندگان

  • C S Barry
  • M I Llop-Tous
  • D Grierson
چکیده

1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is one of the key regulatory enzymes involved in the synthesis of the hormone ethylene and is encoded by a multigene family containing at least eight members in tomato (Lycopersicon esculentum). Increased ethylene production accompanies ripening in tomato, and this coincides with a change in the regulation of ethylene synthesis from auto-inhibitory to autostimulatory. The signaling pathways that operate to bring about this transition from so-called system-1 to system-2 ethylene production are unknown, and we have begun to address these by investigating the regulation of ACS expression during ripening. Transcripts corresponding to four ACS genes, LEACS1A, LEACS2, LEACS4, and LEACS6, were detected in tomato fruit, and expression analysis using the ripening inhibitor (rin) mutant in combination with ethylene treatments and the Never-ripe (Nr) mutant has demonstrated that each is regulated in a unique way. A proposed model suggests that system-1 ethylene is regulated by the expression of LEACS1A and LEACS6. In fruit a transition period occurs in which the RIN gene plays a pivotal role leading to increased expression of LEACS1A and induction of LEACS4. System-2 ethylene synthesis is subsequently initiated and maintained by ethylene-dependent induction of LEACS2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of ethylene biosynthesis in response to pollination in tomato flowers.

Pollination of many flowers leads to an increase in ethylene synthesis and flower senescence. We have investigated the regulation of pollination-induced ethylene synthesis in tomato (Lycopersicon esculentum) using flowers of the dialytic (dl) mutant, in which pollination can be manipulated experimentally, with the aim of developing a model system to study tomato flower senescence. Ethylene synt...

متن کامل

Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato.

We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Ex...

متن کامل

Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated

To investigate the regulatory mechanism(s) of ethylene biosynthesis in fruit, transgenic tomatoes with all known LeEIL genes suppressed were produced by RNA interference engineering. The transgenic tomato exhibited ethylene insensitivity phenotypes such as non-ripening and the lack of the triple response and petiole epinasty of seedlings even in the presence of exogenous ethylene. Transgenic fr...

متن کامل

Ethylene biosynthesis regulation in tomato fruit from the F1 hybrid of the ripening inhibitor (rin) mutant.

We have previously shown a significant decrease in the ethylene production in tomato fruit from the RIN/rin genotype. In this present study, we evaluated the amount of 1-aminocyclopropane-1-carboxylic acid (ACC) and the gene expression and enzymatic activities of ACC synthase (ACS) and ACC oxidase (ACO) to find which type of regulation influenced this low ethylene production. The results sugges...

متن کامل

Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants.

Both ethylene and the enzymes of ethylene synthesis are subjects of intensive scientific investigation. The present review discusses structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, identified for the first time in ripening tomato in 1979. This enzyme is responsible for the conversion of S-adenosyl-L-methionine to 1-aminocyclopropane-1-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 123 3  شماره 

صفحات  -

تاریخ انتشار 2000